The top three questions to help you decide between onsite natural gas boilers or district energy

Evaluating your energy options and making the right choice for long-term operations and sustainability goals

Choosing the right energy infrastructure for your building is essential. You need to install appropriate equipment to meet your load requirements and it’s important to consider a variety of factors that impact the best investment for you.

Facility managers and building owners have many options to consider when it comes to heating and cooling. In many U.S. cities, it’s common to compare the costs of installing and maintaining onsite natural gas boilers against using a centralized system, like district energy. However, evaluating these two options isn’t always straightforward. To ensure you’re comparing apples-to-apples and making the best energy decision to meet your business objectives, make sure to ask these three key questions:

  1. What are the lifecycle costs?
  2. What are my opportunity costs?
  3. Does this energy option align with our institutional objectives?

 

Calculating lifecycle costs

Here are our two cents: It’s easy to look strictly at the price of natural gas today and conclude that onsite gas boilers are the right economic choice for your facility. However, this is not always the case. It’s risky to evaluate a long-term investment by only accounting for one variable – fuel costs.

The most effective way to compare between onsite natural gas boilers and district energy is to calculate lifecycle costs. A lifecycle cost analysis is a powerful tool to determine the cost-effectiveness of the different investment options you’re considering. This analysis considers many factors, including the equipment’s purchase price, financing costs and operating and maintaining the equipment over time. Boiler maintenance is often overlooked but can be a significant expense.

A lifecycle cost analysis provides you with the most comprehensive picture of your energy options’ costs and benefits. You can use the data-backed lifecycle analysis to support your decision when discussing energy alternatives with internal stakeholders. Many of us feel the pressure to make long-term investment decisions in an uncertain and challenging environment, where capital and budgets are tight. Using this tool can help you feel confident you’ve done the work to validate and justify your decision through a robust analysis.

In any lifecycle cost analysis of gas boilers versus district energy steam, it’s essential to include and assess the following variables:

  • Financing costs: Both natural gas plants and district energy connections typically require an up-front investment. The investment size will vary mainly depending on the natural gas equipment and connection costs for district energy. Suppose you need to borrow money from the bank to purchase and install equipment or make other modifications to your space, including loan expenses. In that case, you will need to include the capital cost in your analysis. Interest expense is often overlooked and can be quite large, depending on the project’s size and your borrowing rate.Even if your organization has capital in the bank to cover the cost of a new plant, there is always an opportunity cost to using those funds for energy infrastructure, which we’ll cover in Assessing Your Opportunity Costs. You could use the capital to finance projects that are more aligned and core to your institutional priorities or toward revenue-generating investments.
  • Operations and maintenance (O&M): There are always costs associated with owning, operating and maintaining your equipment. O&M could include full-time staff (consider in your analysis the fully burdened labor costs inclusive of taxes, benefits, etc.) or contractors operating the system. It’s essential to check your local regulations to ensure that you factor in the appropriate number of people with the right qualifications/licensing to meet your city’s requirements. You will also need to account for ongoing maintenance, including parts replacements and future upgrades to keep your system running optimally.Natural gas plants tend to require much higher operating costs, especially over time as systems age, whereas district energy requires little to no O&M budgeting.
  • Variable energy costs: As discussed earlier, many facilities managers and building owners look at the low price of fuel and immediately assume an onsite natural gas plant is the answer. It’s undoubtedly a critical input to the decision-making process. But, to assess your variable energy costs, you need to consider not only the commodity itself but also supply costs and any expectations for increases in future consumption, such as an expansion of a hospital wing.While no one has a crystal ball, we are transitioning quickly to a low carbon economy where carbon taxes are more likely to be a reality. Any decision you make today will have consequences for the next few decades. While the fuel costs are a factor for both district energy and an onsite natural gas plant, many district energy companies are evaluating alternatives to gas and fossil fuels. District energy systems can evolve and adapt to different fuel sources as new technologies emerge.And, finally, evaluate the rate structure(s). It’s vital to ensure you fully understand the rates associated with natural gas and district energy. For example, are you being offered a firm or an interruptible rate? If it’s the latter, while often much less expensive, remember that your service can be interrupted at any time and that this could directly impact your operations.
  • Fixed costs: The fixed costs associated with each option need to be carefully assessed. District energy companies tend to charge a capacity rate, a charge to reserve capacity on the system to ensure your load is uninterrupted. Other fixed costs that should be incorporated are taxes and insurance, which can vary depending upon the option you are evaluating.

Assessing your opportunity costs

Even if you have the capital on hand to finance new equipment, there are always opportunity costs with every investment decision, such as losing potential gain from other alternatives. If you spend your cash on a new mechanical room, that leaves less budget to invest in your core operations. For a hospital, this could mean new technologies or equipment to treat patients, upgrades or expansions to tenant spaces for commercial real estate, or a new lab building on a college campus to educate students. All these examples tie directly to an organization’s core mission. Depending upon the required capital cost for an energy infrastructure project, it’s important to think about the investments you’re giving up or foregoing that could better serve your customers or constituents.

In addition to capital, there are opportunity costs associated with space, particularly in cities where it’s limited and expensive. How property managers utilize and leverage space is vital to the bottom line. Typically, mechanical rooms, large chiller or boiler plants and cooling towers take up a considerable amount of precious space within urban buildings. Of course, there could be other valuable uses for your space to consider, from amenities and retail to storage and parking.

Finally, consider the opportunity cost associated with an outage. Outages can impact your tenants’ safety, comfort or well-being of your patients. Interruptible rates are less expensive but provide the utility with the ability to interrupt your service on what could be a peak winter day or a critical business operation. Evaluating the cost of an outage and downtime is vital in assessing which option to select to best meet your energy needs.

Alignment with other institutional objectives

The last piece worth considering is the alignment of your decision with other institutional objectives. While it’s often difficult to put a dollar figure around objectives, positioning your energy investment to align with your organization’s goals can be valuable.

Many companies and institutions today have environmental, health and safety (EH&S) objectives. Energy decisions have a direct impact and correlation with environmental or sustainability goals. As organizations seek to reduce their carbon footprint, an energy infrastructure decision can be heavily influenced by expected emissions output. However, there are other EH&S-related impacts from an energy infrastructure decision, including the safety of occupants from onsite combustion, other onsite mechanical equipment, air quality and many other factors to consider.

As you evaluate your organization or facility’s options, carefully consider how each of them supports or detracts from your objectives. For example, will steam deliver more immediate carbon savings, relative to onsite combustion, to meet sustainability goals? And, importantly, review the policies your local jurisdictions are considering. These financial impacts on your organization shouldn’t be overlooked.

Making the right choice

Ultimately, the factors that lead to your energy infrastructure decision will be unique to your organization’s goals and circumstances. While there are many factors to consider when making an energy decision – from incentive programs, opportunity costs, sustainability objectives and more – a lifecycle cost analysis ensures you are comparing apples-to-apples to make an informed energy decision that meets your institution’s goals and objectives.

How district energy is helping commercial buildings meet Boston’s BERDO 2.0 requirements

Like many cities nationwide, Boston has set aggressive climate goals to curb the harmful effects of climate change. Boston aims to be carbon-neutral by 2050, meaning the City will only be able to release as much carbon as the environment can safely absorb.

But how does the City plan to make this happen?

In large part, carbon neutrality will come from decarbonizing the energy-intensive buildings that operate in Boston: commercial offices, hospitals, colleges and universities, and many others.

The Building Emissions Reductions and Disclosure Ordinance (BERDO), originally enacted in 2013, required large Boston buildings to report and disclose their emissions.

In 2021, however, the amended ordinance — BERDO 2.0 — was unanimously passed by the Boston City Council and signed into law, officially moving the ordinance beyond reporting and setting enforceable emissions standards for buildings. In 2023, BERDO 2.0 policies and procedures were finalized.

Crucially, the ordinance aims to eliminate the 70% of greenhouse gas emissions that commercial buildings contribute to the City of Boston.

What BERDO 2.0 means for Boston building owners and developers

The 2021 amendment to BERDO gives the City of Boston authority to set emissions standards for large existing buildings. The emissions thresholds will decrease to reach net zero by 2050.

BERDO 2.0 states enforceable minimum building emissions performance standards, measured in kilograms of carbon dioxide equivalent per square foot per year. These emissions standards differ by building use but will begin to apply in 2025 for already-covered buildings and in 2030 for newly-covered buildings. Based on 2022 emissions reporting, several hundred buildings in Boston are projected to exceed their emissions limit in 2025.

BERDO 2.0 also imposes changes in enforcement penalties. The amended ordinance introduced fines for failing to meet the performance standard and inaccurate reporting.

BERDO 2.0 does not just apply to commercial buildings, but also applies to the following:

  • Non-residential buildings that are 20,000 square feet or larger.
  • Residential buildings that have 15 or more units.
  • Any parcel with multiple buildings that sum to at least 20,000 square feet or 15 units.

In addition, the amended ordinance proposes potential ways buildings can achieve their required emissions reductions, including on-site energy efficiency or renewable energy measures, fuel switching, and clean electricity purchasing options like Renewable Energy Portfolio Standard (RPS) Class I eligible Renewable Energy Certificates (RECs) generated by non-CO2e emitting sources, and Power Purchase Agreements (PPAs) with non-CO2e emitting renewable sources.

To find out whether they are over the emissions limit and get an estimated emission reduction forecast, buildings can use the City of Boston’s BERDO emissions calculator. 

How district energy meets BERDO 2.0 requirements

Our team of experts at Vicinity is prepared to help building owners and developers in Boston meet the aggressive emissions reduction requirements posed by BERDO 2.0 and avoid paying alternative compliance payments.

Our clean energy future plan outlines our roadmap to reaching net zero carbon emissions across all our operations by 2050 or sooner. Central to our decarbonization plan is the innovative eSteam™ product.

To generate eSteam™, Vicinity will import carbon-free electrons through co-located substations to power electric boilers, coupled with industrial-scale heat pumps and thermal storage, to deliver electrified, carbon-free steam, known as eSteam™, for heating, cooling, sterilization, humidification, and other thermal energy needs.

Building upon success stories in European countries like Norway, Finland, and Sweden, Vicinity is electrifying our district energy systems. Our approach is based on our ability to:

  • Leverage established technologies such as industrial-scale electric boilers, heat pumps, and thermal storage to convert electricity into steam;
  • ​Capitalize on the flexibility of our existing assets that connect to the electric transmission system today​;
  • Take advantage of the future economics of renewable electricity to introduce green electrons to our fuel mix;
  • And utilize the agility of fuel-agnostic district energy to decarbonize, easily “flipping the switch” to greener fuels​.

By electrifying our central facilities, all our customers can access carbon-free eSteam™ to meet building performance standards and avoid costly building modifications.

Our team is actively working towards our goal of net zero. In November 2022, we kicked off our electrification plans by deconstructing a steam turbine at our Kendall facility. We are installing an electric boiler in its place, which will enter service in 2024.

In April 2023, we took another crucial step in our clean energy future plans by announcing our partnership with MAN Energy Solutions to develop low-temperature source heat pump systems for steam generation. Currently, we are designing the heat pump complex, which will occupy a space of approximately 25,000 sq. ft. and will circulate through 24.5 million to 49 million gallons of water from the Charles River each day, returning the water to the river at a lower temperature and ensuring that the river and its ecosystems remain unharmed.

Meeting BERDO 2.0 requirements with eSteam™

eSteam™ is carbon-free and recognized in the BERDO 2.0 regulations. This thermal product offers a straightforward solution for commercial landlords and developers trying to meet the ordinance’s carbon-reduction goals.

Vicinity’s eSteam™ is recognized as emissions-free by BERDO 2.0 regulations, providing customers with a compliant and cost-effective solution.

The Vicinity team assists customers in Boston with BERDO 2.0 reporting energy usage through Energy Star Portfolio Manager, one of the three reporting requirements set by BERDO 2.0.

Our team sends energy usage data and an annual energy summary to customers every month, making their reporting process more efficient and accurate.

Carbon reduction acts in Boston and beyond

While Boston is undoubtedly leading the country by reimagining the energy industry, many other cities around the U.S. are planning to enact ordinances similar to BERDO 2.0.

The City of Baltimore, for example, is currently in the implementation stages of the Climate Solutions Now Act, or SB 528. The act proposes a greenhouse gas reduction goal of 60% by 2031, with net zero carbon emissions by 2045.

Vicinity’s district energy systems are uniquely poised to help building owners and developers in Boston, Cambridge, Baltimore, Philadelphia, and more to meet building performance standards today and in the future.

 

Decarbonizing public infrastructure: How government buildings are leading the energy transition

Today, government agencies juggle competing priorities, balancing budget restraints, hiring needs, improving processes, and focusing on reducing carbon impact.

Municipal, state, and federal buildings have unique energy requirements. From courthouses and state houses to medical facilities and libraries, these buildings must serve the needs of the public while keeping employees comfortable and able to do their critical work.

Sustainable energy solutions for government buildings

Government buildings have a significant opportunity to decarbonize their operations. Around the world, building operations and materials are responsible for roughly 42% of annual carbon emissions.

Across the U.S., leading cities are taking action to reduce this substantial carbon footprint. Building performance standards are being enacted, requiring buildings to reduce carbon emissions. These requirements make low-carbon, sustainable energy a non-negotiable requirement for new and existing buildings, and government operations are no exception.

In 2023, the Federal government announced the first-ever Federal Building Performance Standard (BPS), which aims to cut energy use and electrify equipment and appliances in 30% of Federally owned building space by 2030.

Many federally owned buildings are partnering with district energy systems to meet these carbon requirements and appeal to eco-conscious employees. Federal buildings currently connected to district energy systems can instantly meet the requirements set by the new standard, and buildings connected in the future can also meet these requirements while benefitting from the efficient, sustainable, and reliable service district energy provides.

Supporting mission-critical work

Because district energy systems leverage centralized infrastructure to serve multiple buildings connected to one system, cities across the U.S. are turning to district energy to advance their clean energy goals and meet their reliability needs.

District energy systems are fuel agnostic, making them a powerful tool for building decarbonization. Vicinity is deploying innovative technologies and integrating renewable energy sources such as wind, solar, and hydro into our systems to decarbonize the buildings we serve by 2050 or sooner. With Vicinity, building owners and operators can rely on an uninterrupted energy supply while reducing their carbon impact.

By connecting to Vicinity’s district energy system, government buildings not only have access to reliable, sustainable energy but are also supported by a team of experts to ensure their operations run smoothly and efficiently. Our specialists include experienced licensed engineers, operators, and financial professionals who provide dedicated service.

Vicinity Energy serves over 40 million square feet of government building space nationwide, working as a trusted energy partner with federal and state operations, from libraries and city halls to federally-owned hospitals.

Benefits of district energy service

From reducing carbon emissions to improving resilience, district energy systems provide reliable service to government buildings so they can focus on the vital work that is shaping our country. With district energy, government buildings can free up additional space, reduce energy expenses, and meet emission reduction requirements.

Vicinity’s energy solutions for government buildings are reliable and sustainable. They help advance the innovations that propel our communities forward and protect the world.

  • Increased reliability and sustainability – District energy is a safer and more sustainable alternative to onsite chillers or boilers. Vicinity’s 99.99% reliable energy service allows government operations to focus on their critical work.
  • Reduced carbon footprint – As Vicinity electrifies our district energy systems, carbon-free energy helps buildings better align with government efforts to protect the health of local ecosystems and communities.
  • Transferred energy risk – Vicinity’s district energy systems have interconnected central facilities with multiple power supplies, fuel sources, and back-up generation to ensure continual service. In addition, connected buildings reduce energy risk by transferring operations and maintenance (O&M) responsibility to Vicinity’s energy experts.
  • Reduced operations and maintenance costs – Vicinity’s O&M services maximize your infrastructure investment by keeping building energy systems working at peak performance.

Get started with district energy today to decarbonize your buildings and access reliable, uninterrupted service.

Market update: natural gas outlook winter 2024

As we continue into the winter season, Vicinity’s team has been evaluating weather patterns and predictions for the natural gas market to prepare our customers for potential price fluctuations.

After peaking in December 2023, the El Niño pattern continues, and February 2024 weather forecasts indicate above-average temperatures in the Northeast and Midwest, induced cooling in the South, and higher precipitation in the Pacific, which experts predict may continue into the remainder of the winter season.

The natural gas markets have reset to similar levels as 2021, before the geopolitical events in 2022 drove prices above average.

By the numbers: what we know and what we can expect

Prior to January 2024’s well freeze-offs, the U.S. lower 48 saw strong natural gas production, primarily due to efficiencies in the Permian Basin of the U.S. that have provided ample supply to the market, mitigating demand risk. However, due to colder weather in the Permian basin in recent weeks, natural gas production has fallen.

Currently, natural gas storage levels are 4% above 2023 levels and 5% above the 5-year average. Europe’s storage facilities were 80% full through the first half of January 2024, slowing European demand for LNG and suppressing pricing.

Colder weather conditions in January 2024 have contributed to well freeze-offs in the Permian natural gas basin, impacting output and potentially providing more upside risk to pricing. However, the January 2024 futures contract settlement was less than levels at this time last year.

Key electrification progress

The adverse effects of natural gas far outweigh the benefits of continuing to invest in this unsustainable fuel source.

In 2023, the U.S. saw an estimated 1.9% decrease in carbon emissions, as measured in research done by the Rhodium Group. Throughout the year, emissions remained below pre-pandemic levels and dropped to 17.2% below 2005 levels.

While this decrease is substantial, an even greater emissions reduction is necessary to limit climate change. In 2023, Earth’s average land and ocean surface temperature was 2.12 degrees F above the 20th century, making it the highest global temperature among all years recorded since 1850, according to the U.S. National Oceanic and Atmospheric Administration.

The undeniable climate crisis drives Vicinity’s progress towards transitioning away from fossil fuels and eliminating carbon emissions from our operations. By electrifying our operations nationwide, we will be able to offer an affordable, carbon-free path for building owners to meet sustainability goals and join us in limiting climate change.

Our first electric boiler has been delivered to our Kendall facility in Cambridge, Massachusetts, and it will enter service in 2024, immediately allowing our customers to harness carbon-free energy and decarbonize their buildings.

The industrial-scale heat pump complex we are developing in partnership with MAN Energy Solutions is undergoing engineering and will enter service in 2026. These milestones demonstrate our commitment and progress towards a net zero carbon future.

How district energy meets the Federal Building Performance Standard

The Biden Administration announced the first-ever Federal Building Performance Standard (BPS), which aims to cut energy use and electrify equipment and appliances in 30% of Federally owned building space by 2030.

This announcement paves the way for Federal buildings to adopt cleaner, more energy-efficient technologies. This transition to green energy is critical to achieving President Biden’s net-zero emissions goal across all Federal buildings by 2045.

Many states and cities around the U.S. are enacting similar fossil fuel bans for existing and new buildings. In Boston, for example, Mayor Michelle Wu recently announced that she intends to file legislation that allows for a ban on the use of fossil fuels for new developments and renovations in Boston.

In Maryland, the Climate Solutions Now Act of 2022 sets a statewide greenhouse gas (GHG) reduction goal of 60% by 2031 and net-zero by 2045. The legislation also includes building performance standards like reporting direct emissions from heating starting in 2025 and achieving a 20% reduction in direct emissions by 2030.

Philadelphia’s Climate Action Playbook outlines strategies to achieve a 50% reduction in emissions from the built environment by 2030. Kansas City outlined key goals for achieving carbon neutrality in municipal operations by 2030 and carbon neutrality citywide by 2040.

Biden’s aggressive Federal standard is poised to reduce emissions for a massive swath of U.S. buildings: the U.S. General Services Administration (GSA) owns and leases more than 371 million square feet of space in 8,600 buildings in more than 2,200 communities.

So, what is the impact of this effort? The U.S. Department of Energy estimates that over the next 30 years, this new standard would reduce Federal building carbon emissions by 1.86 million metric tons and methane emissions by 22.8 thousand tons.

What does the new Building Performance Standard mean for Federal buildings?

The Federal BPS requires Federal buildings to phase out on-site fossil fuels for end-uses such as heating buildings or producing hot water.

Buildings must eliminate 30% of Scope 1 emissions, defined as “direct GHG emissions from sources that are owned or controlled by the Federal agency,” by 2030.

Scope 1 emissions are also defined as emissions primarily associated with the following:

  • Fuel combustion for owned or on-site generation of electricity, heat, cooling, or steam
  • Fuel combustion for agency-controlled mobile sources
  • Intentional or unintentional GHG releases, i.e., fugitive emissions
  • Manufacturing, industrial, and laboratory processes energy

According to the rule, approximately one-third of Federal building-related greenhouse gas emissions are Scope 1 emissions generated from on-site fossil fuel combustion, commonly powered by natural gas-fired equipment.

The rule also defines Scope 2 emissions as “Indirect GHG emissions resulting from the generation of electricity, heat, or steam purchased by a Federal agency.”

In short, Federal buildings currently using on-site natural gas boilers will be required to switch to an alternative option, like connecting to a utility-scale district energy system or installing their own electrification equipment, such as heat pumps.

How can federal buildings meet this 30% reduction requirement by 2030?

The primary pathway to achieve this goal is to electrify all appliances and equipment used for processes like space heating and domestic or service water heating. However, the rule also highlights another option, one that already exists and doesn’t require any upgrades or retrofits to buildings: connecting to district energy.

What does the Federal BPS mean for buildings connected to district energy systems?

The over 600 district systems operating throughout the U.S. power college campuses, commercial buildings, and cities using efficient, reliable, clean steam.

Biden’s standard makes an important distinction for buildings receiving electricity, hot or chilled water, or steam via district energy.

If the district system is agency-owned, the building must include the direct Scope 1 emissions from the district system in determining whether the agency can help the building meet the BPS goal.

However, utility-owned district systems, like Vicinity Energy’s, are categorized as indirect, Scope 2 emissions, and not part of the new Federal BPS.

Federal buildings currently connected to Vicinity’s systems can instantly meet the requirements set by the new standard, and buildings connected in the future can also meet these requirements while benefitting from the efficient, sustainable, and reliable service district energy provides.

Vicinity Energy’s systems will help buildings meet mandates like BERDO 2.0 in Boston, BEUDO in Cambridge, and now the new Federal BPS; however, our systems are moving beyond these requirements as we are taking steps to electrify our operations and decarbonize the cities we serve.

Our progressive climate action plan will allow us to reach net-zero carbon emissions ahead of our 2050 commitment by electrifying all of our central facilities and instantly decarbonizing the buildings we serve. With a combination of  proven technologies such as water-source heat pumps, electric boilers, and molten salt thermal storage, we can offer our customers eSteam™, the nation’s first-ever carbon-free energy product powered by renewable energy sources like solar, wind, and hydro power.

In November of 2022, Boston Mayor Michelle Wu, along with Vicinity’s customers and partners, celebrated a significant step forward in these plans to electrify with the deconstruction of a steam turbine at our Kendall Green Energy Facility in Cambridge, Massachusetts.

An electric boiler is taking its place and will enter service in 2024 to begin powering Boston and Cambridge-based buildings, like those owned by innovative customers such as IQHQ, with carbon-free eSteam™.

While we commemorated this exciting step in Boston and Cambridge, our other locations in Philadelphia, Baltimore, Kansas City, and more will undergo similar electrification processes in the coming years.

The top seven questions to ask when selecting an energy provider

Facility managers and building owners have many options to consider regarding heating and cooling a property. However, evaluating these options isn’t always straightforward.

To ensure decision-makers make the best choice to meet their organization’s business objectives, these questions are critical to ask when vetting energy providers.

1. What are the lifecycle costs?

A lifecycle cost analysis will give you the most comprehensive picture of an energy option’s costs and benefits. You can then use this data-backed analysis to support your decision when discussing energy alternatives with internal stakeholders.

An energy lifecycle cost analysis typically reviews costs over a 20-year cycle, to account for the full lifespan of energy infrastructure. A typical lifecycle cost analysis assesses the following variables:

  • The up-front costs required to finance the energy option
  • Costs associated with operating and maintaining the infrastructure
  • Variable energy costs related to the infrastructure, such as fuel costs
  • Fixed costs such as taxes, insurance, and capacity rates

It’s essential to understand how your energy provider can help your organization mitigate capital risk. District energy systems, for example, often help reduce capital risk by avoiding large upfront costs and ongoing maintenance costs.

Steam distribution systems can interface with any type of HVAC building system to provide low cost and reliable thermal energy and cooling. Centrally produced chilled water eliminates the need for customers to purchase, operate, and maintain chillers and cooling towers. These benefits allow building owners to take advantage of competitive energy pricing and eliminate capital costs, interest payments, property taxes, and insurance costs.

2. What renewable energy options do you provide?

Today, many companies and institutions have sustainability goals to meet, and energy decisions directly impact these initiatives.

As your organization seeks to reduce its carbon footprint, an energy infrastructure decision should be influenced by the solution’s emissions output and a provider’s ability to adopt more sustainable energy options in the future.

Decision-makers should explore the energy provider’s renewable energy options and inquire about their plans to incorporate more sustainable fuels into their energy mix. This will help reduce an organization’s carbon footprint and attract top tenants who prioritize working in a sustainable, energy-efficient space.

In addition, buildings that do not conform with local, state, and federal climate legislation requirements can pose several risks to organizations. In many places, the risk of non-compliance can include fines, damaged brand image, and the increasing costs of green technologies over time.

District energy systems, however, are fuel agnostic, meaning they can swiftly and aggressively integrate renewables into their energy mix as more renewable electrons are available on the grid. By replacing fossil fuel infrastructure with electric boilers, heat pumps, thermal batteries, and other clean technology, district energy systems can effectively decarbonize communities without retrofitting or installing new electrical infrastructure in individual buildings.

This sustainable pathway is a major strategic advantage for district energy over other energy options, especially when companies like Vicinity Energy are setting customers on a rapid pathway to decarbonization by 2050, when many emissions standards will be in effect.

3. What are my opportunity costs?

It is also important to consider the opportunity costs associated with your investment decision, such as the loss of potential gain by opting for an alternative.

For example, by spending capital on a new mechanical room, more budget is needed to invest in your core operations. For a hospital, this budget could be used for new technologies or equipment to treat patients, upgrades or expansions to tenant spaces for commercial real estate, or a new lab building on a college campus to educate students.

Depending upon the required capital cost for an energy infrastructure project, it’s important to consider the investments your organization forego that could better serve your customers or constituents.

Space is also associated with opportunity costs, particularly in cities where it is limited and expensive. Typically, mechanical rooms, large chiller or boiler plants, and cooling towers take up a considerable amount of space within urban buildings that could otherwise be used to drive income with amenities and parking.

4. Can you explain our energy usage patterns?

Once service begins, the potential to better understand your property’s energy usage is critical. Discovering when a space’s usage peaks and ebbs can help with budgeting and adjusting consumption habits accordingly.

Access to resources that track your energy consumption empowers tenants to identify patterns and areas for improved efficiency. Vicinity’s team can provide our customers with a monthly or yearly report that details their energy usage, including when it was highest and lowest.

5. Are your energy systems redundant?

Redundancy is a critical feature to look for in your energy provider. A redundant system is an electrical system designed to feature two or more of the same power supply. This means that if one power supply fails, the extra power supply will be able to take over the full operation of the system. Redundancy ensures that your energy supply remains uninterrupted and continues service even during an emergency.

District energy systems have built-in redundancies with numerous backup sources, equipment, and infrastructure. Because these systems operate at scale, district energy systems like Vicinity’s can eliminate the risk, headache, and expense associated with maintaining building mechanical rooms.

A district energy system’s ability to switch fuel allows Vicinity to be more reliable than other alternatives; as our systems transition to cleaner fuels, we will still have access to backup fuels if needed in an emergency.

6. What level of support do you provide regarding maintenance and equipment?

Operations and maintenance (O&M) for a facility or on-site energy system requires expertise in several cross-departmental fields and could require full-time staff or contractors to operate the system. You must check your local regulations to ensure you factor in the appropriate number of people with the right qualifications and licensing to meet your city’s requirements.

Owners must also account for ongoing maintenance, including parts replacements and future upgrades, to keep the system running optimally. Asking energy providers to demonstrate their level of support can help ensure your business will be spending only what is necessary in the future.

By outsourcing the management of energy infrastructure to Vicinity experts, our customers minimize their energy-related costs, maximize efficiencies, and devote more focus to their core mission.

An energy provider with expertise in O&M can help minimize operational risk for your organization, while maximizing infrastructure investments by keeping building energy systems working at peak performance for years to come.

7. What are your emergency procedures in case of power outages?

For buildings and tenants where operations are mission-critical, it is essential to prepare for natural disasters and power outages. Hospitals and life sciences laboratories, for example, need a reliable energy source to guarantee they can perform research and provide critical surgeries and life-saving procedures.

Whether it be a power outage, mechanical interruption, or extreme weather event, your energy provider should be able to detail their plan to resume service and ensure the safety of all parties involved.

For instance, district energy systems are incredibly resilient in the face of a service interruption. Due to their ability to isolate issues and utilize various fuel sources in an emergency, these systems can maintain extremely reliable service even in the most demanding weather events or emergencies. By design, district energy infrastructure comprises insulated carbon steel conduit piping encased in concrete, which will withstand flooding and other extreme weather.

Vicinity’s team undergoes regular safety training to ensure safety is a daily tenet of our day-to-day operations. Our employees are armed with the tools and resources needed to ensure work is always conducted safely and that emergency protocols are carried out in the face of a service interruption or safety hazard.

Making the right choice

Ultimately, the factors that lead to your energy infrastructure decision will be unique to your organization’s goals and circumstances. However, by posing these essential questions to energy providers, building owners can be empowered to make more informed purchasing decisions, save on costs, and contribute to a greener future.

District energy in a climate-uncertain future

With climate change and its clear and present danger upon us, communities must act to embrace resilient energy infrastructure and prepare for a future in a very uncertain climate. Extreme weather events, like the unprecedented cold weather in the midwestern and southern regions of the United States in February 2021, and Superstorm Sandy in 2012, have devastated people living in these areas, presented major challenges to the nation’s energy systems, and driven resilience to the forefront of national conversation – not to mention the extensive financial response required to recover from these events.

While pursuing new energy technologies and solutions is critical to our eventual success as a society, we must balance this future-looking approach with an emphasis on strengthening existing infrastructure and cost-effectively protecting citizens and current energy networks. District energy is a proven energy delivery framework that is resilient, affordable, scalable, and already utilized by grids across the country. With underground carbon steel pipes, insulated and encased in concrete, and fed by central energy facilities, district energy is, by its very construction, extremely resilient. It has the added benefit of enabling a rapid shift to renewable sources and other green energy approaches. Based on these key attributes, district energy is a key component of the solution to our climate-uncertain challenges.

What we’re up against

Since the 1980s, there has been a significant increase in the number and severity of U.S. power outages due to extreme weather. February’s unprecedented winter outages in Texas are just the latest example. Millions of Texans were without power or heat when about half of Texas’s electricity generation was offline. As a result, fuel supplies were slowed by frozen natural gas lines, some towns had to turn off their water supply, and carbon-monoxide exposure skyrocketed when many Texans turned to home generators to keep the heat and lights on. Last year was a record-setting one for wildfires, with over 10 million acres burned nationwide, leading to $20 billion in costs and damages. A decade ago, in 2012, Hurricane Sandy left much of New York City without electricity for days, in addition to causing flooding that shut down power plants and fuel refineries. 117 people were killed, and 8.5 million Americans were without power.

In addition to severe disruptions of everyday life and threats to the health and welfare of residents, these events are costing Americans dearly. According to the National Oceanic and Atmospheric Administration, climate disasters have cost the United States over $1.875 trillion since 1980. The United States cannot afford to continue to operate such vulnerable utility infrastructure, especially as the situation continues to escalate. Americans are paying in tax dollars, and – more importantly – in lives, every moment that goes by without the prioritization of resilience in our nation’s energy infrastructure.

Many communities have already officially recognized the need to put energy resilience at the very center of civic planning. For example, in 2020, Maryland launched the Resilient Maryland Program to fund innovation around energy resilience and distributed energy resources. The Massachusetts Division of Capital Asset Management and Maintenance has a specific resilience program in place to protect key infrastructure from the effects of climate change. And last fall, the city of Philadelphia hired its first Chief Resilience Officer; someone whose entire mission is to ensure that the city’s resources can withstand the impacts of climate change.

How district energy models resilience now

While acknowledging the problem is certainly the key first step of progress, and research toward future improvements is more than necessary, what can communities do right now to protect citizens from the climate disasters that are sure to come at an increasing rate? One solution is district energy.

District energy uses a centrally located facility to generate thermal energy – heat, hot water, or chilled water – for a number of nearby buildings that form an “energy district.” Microgrids, such as can be found at colleges, hospitals, airports, and office parks, are examples of district energy arrangements. District energy offers multiple benefits to its users, including freedom from asset ownership and maintenance and corresponding costs, and price stability. Most important to this issue, however, is that district energy provides energy islanding capabilities that offer far greater resilience than broader-reaching conventional utilities.

For example, during Hurricane Sandy, Princeton University relied on its own microgrid, allowing the university to maintain power and resources while the rest of the city was offline. In fact, Princeton was able to offer emergency workers and the general public a place to warm up, charge their phones, and access the internet, since they were not reliant upon the town’s non-functioning energy supply.

How is district energy so resilient? One major factor is that the generation facilities are often located in urban centers, within or nearby to the grids they serve, as opposed to energy needing to be transported over hundreds of miles from a major power plant. These microgrids can then operate autonomously, even if those around them are without resources.

In addition to proximity, many district energy systems are able to ‘blackstart’ – that is, they can restore operations independently without relying on an external source to recover from a shutdown. Because of this ability to island and blackstart, some district energy systems have upwards of 99.99% reliability, making them desirable infrastructure in an increasingly climate-uncertain world. In fact, many major American military facilities, including Fort Bragg and Andrews Air Force Base, operate on district energy systems due to its superior energy resilience and security.

How district energy can contribute to a greener future

In addition to helping protect communities from devastating climate events right now, district energy can help pave the way to a greener future, in which global warming is addressed and the effects of climate change limited, to help reduce the number of climate-related disasters to begin with. Here are some key ways district energy helps reduce carbon footprints:

  • Reduces primary energy consumption for heating and cooling by up to 50%
  • Many district systems integrate Combined Heat and Power (CHP), which has an average efficiency of 75%, compared to 50% for traditional generation methods (significantly offsetting carbon emissions that would have been emitted through conventional means)
  • A diversity of buildings (such as commercial buildings with daytime use and residential buildings with more evening use) in a district can lead to waste energy sharing and load balancing
  • Central district energy facilities can be easily electrified. Once switched over to new renewable fuel sources and/or technologies, all buildings that are part of the district system will benefit from the carbon footprint reduction instantly, since they are all connected to the same generation facility

Fortunately, the world is catching on to these benefits. The United Nations launched the District Energy in Cities initiative to encourage urban centers to take advantage of the greening power of district energy to help reduce cities’ carbon footprints and thus their contributions to climate change. Campuses, hospitals, and research facilities around the country are already relying on district energy to both meet current energy security needs and to do their part in working toward a greener future.

It’s not always the case that the technology that can help us stay safe now is the same technology that can help us move systemically in the right direction. In the face of a danger as pressing and dire as climate change, we’re fortunate to have that present and future solution in district energy.

What is district energy?

How district energy is helping commercial buildings and local communities

District energy uses local resources to tackle broad, global energy and environmental challenges. But what is it, exactly?

District energy uses a centrally located facility, or facilities, to generate thermal energy – heat, hot water or chilled water – for a number of nearby buildings that in effect form an “energy district.” These resources are transported through underground pipes to meet the needs of communities, cities, or campuses – such as colleges, hospitals, airports, or office parks. This provides multiple advantages:

  • Freedom from asset ownership and maintenance, including the costs associated with this
  • Energy pricing stability and cost effectiveness
  • More efficient energy delivery
  • Greater reliability and redundancy in energy supply
  • Reduced carbon footprint

The International District Energy Association created this great short video that provides a solid introduction to how and why district energy works so well:

Although district energy has an impressive history (did you know it was originally used to heat the baths of Ancient Rome?), it’s also a constantly evolving technology that uses innovative techniques, fuel sources and infrastructure to provide more efficient, resilient, and environmentally responsible energy than conventional generation sources. According to the United Nations Environment Programme, district energy systems “typically reduce primary energy demand in heating and cooling by 50%,” and can achieve operational efficiency of up to 90%.

District energy is cost-effective

So, is district heating better than onsite energy generation?

There’s a common misconception that onsite energy generation is cheaper than connecting to a district energy network. This faulty conclusion usually arises when the start-up costs of generating energy onsite and the ongoing operations and maintenance (O&M) expenses associated with onsite infrastructure are not considered.

Because district energy customers receive a finished thermal product, they don’t need to pay the millions in upfront capital costs for installation of chillers and/or boilers or the ongoing costs to maintain their own equipment. Onsite heating and cooling infrastructure can represent one of the largest startup costs for a new building and are repeat offenders when it comes to breakdowns that require pricey repairs. It’s important to conduct a lifecycle economic comparison between district energy and onsite generation when comparing the two.

By evaluating variable energy costs, recurring fixed operating costs and upfront capital costs, oftentimes, district energy is the optimal economic solution.

District energy also takes up much less space in a building than onsite generation would. On average, district energy connection infrastructure requires about the same amount of space as a parking spot, which means buildings can make smart, economic use of all the space they would have needed to dedicate to boilers, water towers, cooling systems, thermal storage, and more.

District energy is reliable

One thing that makes it so reliable is that district energy systems have built-in redundancy within its central plants and networks, meaning they can leverage multiple generating assets and fuel, power and water sources. If a piece of equipment or utility source is compromised or experiencing any issues, the system can continue to operate by drawing from its back-up sources and infrastructure. Compare that to what happens to a building’s operations if an issue occurs with an onsite boiler – no heat or hot water until it’s fixed. In fact, a building’s district energy service could eliminate the need for onsite N+1 redundancy.

As global climate and weather conditions become more extreme, the ability to ensure reliable energy even during severe conditions is a growing concern. Because many district energy grids can black-start (meaning they can restart without the aid of external electrical transmission) and can use a range of fuel sources, such systems can maintain a high level of energy uptime even during extreme weather events.

District energy is more reliable in terms of its components and delivery too. With insulated carbon steel conduit piping encased in concrete, a district energy network’s distribution system is more robust and resilient than conventional utility alternatives.

District energy is sustainable

With climate change in full force, every decision we make plays a critical role in healing the planet and minimizing our negative impact on the environment.

Energy production is responsible for a substantial portion of the greenhouse gases that trap the sun’s heat within the earth’s atmosphere. Fossil fuels, such as coal, oil, and gas stand out as the most predominant culprits for climate change, as they are responsible for over 75 percent of global greenhouse emissions and 90 percent of all carbon dioxide emissions. These numbers paint an urgent picture: everyone must play their part in cutting emissions in half by 2030 and reaching net-zero emissions by 2050.

Despite these concerns, a clean energy future is well within reach. The International Renewable Energy Agency (IRENA) estimates that around 90 percent of all decarbonization solutions in 2050 will involve harnessing green energy from renewable sources to improve energy efficiency and supply innovative electrification technologies.

By centralizing and aggregating the production of heat, hot and chilled water to multiple buildings, district energy cuts down on the amount of fuel that would be required by individual buildings using onsite generation, and the resulting carbon emissions. Furthermore, it allows for faster, more complete transitions to clean energy sources as they become available: district energy systems can employ renewable energy sources, like biofuels, wind, solar, and hydro, to produce carbon-free steam and maximize energy efficiency.

District systems and infrastructure can easily be updated to integrate new technologies and/or renewable fuels that benefit a great number of buildings in a geographic footprint. This allows for carbon footprint reductions at a scale that would be impossible to achieve on an individual basis.

As an example, Vicinity Energy delivers thermal energy to over 100 million square feet of space throughout Philadelphia. As the central plant in the district adopts cleaner, green energy approaches, the ripple effect is massive! For example, combined heat and power (CHP) is one technology that Vicinity has employed in several of its districts, including Philadelphia, to provide sustainable, efficient thermal energy to its customers.

Vicinity has also implemented the use of biogenic fuels in our operations. Otherwise wasted vegetable oil from restaurants is then collected and can be burned in our district energy systems as-is, resulting in huge energy and carbon savings. Other technologies include waste-to-energy, geothermal, and other sustainable distributed energy resources.

Check out what Vicinity Energy CEO Bill DiCroce had to say about biofuels and the next steps required to put them into action across district energy grids:

Bringing it all together, locally and globally

This shift to more efficient renewable fuels and the impacts that only district energy can achieve at such a large scale has brought considerable carbon reductions here in the US and the world over. For example, the city of Anshan in China is projected to reduce its use of coal, a heavy pollutant, by 1.2 million tons each year by combining separate networks into a district, and simultaneously capturing 1 gigawatt of heat wasted by a city steel plant.

Another example is Paris, which has utilized district energy for years to combat air pollution. Today, 50 percent of Paris’s social housing, all of its hospitals, and 50 percent of its public buildings are supplied by district energy. That’s the heat-demand equivalent of 500,000 households! Or look at London, which has a number of district heating projects underway, including the Lee Valley Heat Network, which will provide heat and hot water to over 5,000 homes by capturing waste heat from a nearby EcoPark.

Whether for reasons of price, reliability, efficiency, or to create more sustainable infrastructure for future generations, communities across America and the world are looking locally, joining together, and making a change for the better with district energy.

Preparing heating equipment for winter with preventive maintenance

As the days grow shorter and temperatures drop, heating systems are finally turned on after a long period of disuse. This time of year signals the important task of evaluating a building’s energy system to ensure it is equipped to deliver heat efficiently and safely.

Building owners must establish a preventive maintenance program with their energy provider to maintain efficient energy delivery, avoid equipment failures, reduce energy costs, and ensure the long-term sustainability of a commercial property.

Why preventive maintenance is critical

The winter season is a key time to evaluate the equipment used in buildings connected to district energy systems. Taking preventive measures with a building’s heating equipment before the winter season and low temperatures begin in earnest can help to:

  • Improve equipment reliability and function
  • Reduce energy consumption, greenhouse gas emissions, and operational costs
  • Prevent unplanned costs, maintenance, and even system downtime
  • Enhance safety for employees and building occupants

How to prepare heating equipment for cold weather

Partnering with our customers, Vicinity’s team tailors our preventive maintenance approach to the unique needs of each building. Preventive maintenance activities can be done any time but are typically conducted in preparation for the winter and the summer to prepare for peak loads due to temperature changes.

Depending on the building’s system, our team can isolate a maintenance issue or conduct a small shutdown event to repair equipment. Ahead of low temperatures, buildings can also test their heating system during off hours or weekends to identify any problems with climate control or local area flow control.

However, several elements of district energy systems require inspection every year or more. Let’s dive into the most critical components buildings should focus on when preparing for the heating season.

Steam trap inspections

Steam traps collect condensate to prevent corrosion caused by built-up moisture and ensure that high-quality, dry steam flows through the steam system. Steam traps also block the escape of live steam, minimizing energy waste. Typically done between November and March, steam trap surveys help ensure the efficient delivery of district energy.

A Vicinity technician conducts the steam trap inspection using an ultrasonic digital detector. The process involves locating, identifying, tagging, and periodically testing the performance of the steam trap. If it is the first survey, the technician tags and catalogs each trap for future surveys.

Failed traps can allow large amounts of steam to pass through the equipment before giving up its thermal energy content. Failed traps can lead to water hammers, which damage the building’s system and produce undesirable noise.

Pressure Regulating Valves (PRVs)

Pressure regulating valves (PRVs) are designed to reduce incoming steam pressure to ensure safe steam distribution. While typically done in the summer, testing pressure regulating valves can be done at any time to prepare for the winter season.

Vicinity’s team will typically identify the PRV’s make, model, size, and serial number. They will then test the valve for leaks, clean orifices, test the gauging, and set it to the desired system pressure.

Testing PRVs is important because failed PRVs may cause system over-pressurization and relief valves to release steam into the atmosphere. The PRV can also improperly cycle open and closed, both oversupplying and then starving the downstream equipment of steam. The inspection will include inspecting the PRV operating mechanism (pneumatic, hydraulic, or motor operated).

Heat exchanger and water samples

A heat exchanger is a system that transfers heat between a source and a working fluid. District energy systems transfer heat from the hot water in the district heating system to the cold water in an individual building’s heating system.

To ensure that heat exchangers function properly, Vicinity’s team takes water samples from the heat exchanger and tests the water for conductivity. This test helps ensure that tube bundles are not leaking and that city water is not entering the system through such leaks.

Vicinity’s team also drains cooling tower heaters during cold weather. When temperatures are expected to be below 20 degrees F for an extended period, the cooling tower basin heaters are drained below the building roof level, the basin heater is turned off, and space heaters are turned on as applicable. Our team also works to adjust glycol or other antifreeze concentrations throughout the cooling system, as required.

Steam pipe

Before the winter season, it’s standard to visually inspect steam piping. Vicinity’s team typically checks for leaking joints, watermarks, insulation, and corrosion on the pipes.

This ensures safe, reliable steam delivery into the building and reduces the opportunity for steam to leak into the connected building.

Condensate return line

A visual inspection of the building’s condensate return line is done ahead of the winter season to check for leaks and corrosion. A condensate return system collects condensate from different points in the system and returns it to the boiler to save energy. This inspection involves checking the condensate pump seals for leaks and vent pipes for vapor emissions. Proper insulation and plugging penetrations is key to preventing freeze ups.

This inspection is done to avoid condensate water spills and ensure proper evacuation of condensate from system lines, allowing steam-operated equipment to function correctly. The test can also help identify any leaking steam traps in the system.

Mechanical room hot water loop

In the mechanical room of a building, Vicinity’s team inspects all piping, inlet/outlet temperatures, and pressures on heat exchangers and mechanical pumps.

This inspection confirms the adequate operation of key energy transfer equipment, such as heat exchangers, which supply building heat, hot water, and other process loads. The general condition and function testing of space heaters and heat tracing is important to note as well.

Winter preparedness checklist

Vicinity’s facilities take extensive measures to prepare for the winter weather before the month of November to make sure our teams are prepared for any extreme weather or cold-related emergency that comes up.

There are steps that every building should take, however, to ensure winter preparedness:

  • Designate a ‘weather watcher’ to monitor weather conditions.
  • Train your team on how to properly remove snow from roofs, roads, and equipment, staff according to needs.
  • Gather emergency supplies, including steam hoses for thawing frozen lines, portable heaters, antifreeze supplies for cooling systems, shovels, warm clothing and hand protection.
  • Keep all fire-protection-related equipment free of snow and ice for easy access.
  • Check wet and dry sprinkler systems and keep them clear of snow and ice.
  • Prepare snow removal equipment.
  • Make sure fixed and portable heaters are working and have appropriate fuel levels.
  • Ensure the building envelope is in good condition and close unnecessary openings like doors, windows, and piping penetrations.

Vicinity’s experts are here to help

Taking proactive steps to maintain your building’s energy systems can lead to significant benefits. From lower energy bills to a reduced carbon footprint, the effort invested in preparing your facility for winter pays off. Vicinity’s energy experts are here to help with all your energy needs. Give our energy experts a call to:

  • Work on repairs
  • Submit quotes before the coming heating season
  • Get help preparing your budgets for next year
  • Schedule a site visit to get preventive maintenance assessments from our team

Sustainable commercial real estate with district energy

Today, landlords must compete for tenants among various alternative options, from co-working to work-from-home models and other hybrid options. Attracting tenants can be difficult in major metropolitan cities with high real estate values and limited space. That’s why appealing to tenants entails various techniques—and clean energy is a significant driver.

A building’s heating and cooling solution can influence tenant lease decisions and future commitments since energy drastically impacts cost, space availability, and sustainability. With district energy, building owners can free up additional amenity space, reduce energy expenses, and demonstrate sustainability benefits to potential tenants and the community.

Did you know that a 10% decrease in energy use could lead to a 1.5% increase in net operating income?

Large-scale projects call for impactful solutions

Commercial buildings and facilities have unique energy requirements. From ventilation, chilled and hot water, space temperature, and humidity requirements, commercial owners need high-quality, reliable thermal energy to support the tenants working in their spaces daily.

Disruptions in energy supply can result in financial setbacks and tenant dissatisfaction, which may affect tenant retention and jeopardize future development projects.

Commercial buildings have a significant opportunity to decarbonize their operations: they generate about 50% of U.S. carbon dioxide emissions, and 30% of the energy consumed in commercial and industrial buildings is wasted.

Across the U.S., leading cities are enacting building performance standards that require buildings to reduce their carbon emissions, making low-carbon sustainable energy a non-negotiable requirement for commercial offices. Many commercial owners are partnering with district energy systems to meet looming carbon requirements and continue to appeal to eco-conscious tenants.

How Vicinity can help

Vicinity Energy currently provides steam, chilled water, and hot water to over 300 commercial office, retail, and mixed-use buildings nationwide, totaling nearly 115 million square feet of building space. Commercial property owners can access reliable and clean energy by connecting to Vicinity’s district energy systems. Still, a team of experts also supports them to ensure their property is always running smoothly and efficiently. Our specialists include experienced licensed engineers, operators, and financial professionals.

District energy systems are fuel agnostic, making them a powerful tool for building decarbonization. Vicinity is deploying new carbon reduction technologies and integrating renewable energy sources such as wind, solar, and hydro into our systems to decarbonize the buildings we serve by 2050 or sooner. With Vicinity, commercial landlords like Coretrust Capital Partners in Philadelphia, Metropolitan Partnership in Baltimore, and Clarendon Group in Boston know their energy systems are sustainable and reliable and contribute to a greener future.

“Our partnership with Vicinity Energy and access to its district energy system is a great option for us as it streamlines a number of facility and maintenance responsibilities, which allows us to spend more time focusing on the needs of our tenants. As an added bonus, the fact that Vicinity Energy’s services increase our overall efficiency creates great alignment with our goals to ensure that our properties are as environmentally sustainable as possible,” said Michael S. Beatty, President of H&S Properties Development Corp.

District energy for critical commercial real estate operations

Our energy solutions for the commercial real estate industry are reliable and green. They help advance the innovations that propel your properties and our communities forward and protect our world.

  • Increased reliability and sustainability – Without the burden of onsite combustion or maintaining chillers or boilers, district energy is a safer and more sustainable alternative. We have a 99.99% reliability guarantee, allowing you to focus on your business while we ensure 24/7 energy delivery.
  • Uninterrupted energy supply – Proper operations and maintenance (O&M) of energy infrastructure are essential to ensuring that commercial facilities can rely on a reliable and uninterrupted thermal energy supply.
  • Remote monitoring – If your building needs energy O&M support by a qualified engineer but does not require someone full-time onsite, we can provide remote monitoring of your energy infrastructure at our innovative control centers.
  • Energy efficiency and optimization – From efficiency assessments and investments to project implementation, our experts will create and provide a custom energy strategy to optimize your campus energy assets and deliver solutions that drive energy efficiency.

Get started with district energy today to decarbonize your buildings and access reliable, uninterrupted service.