eSteam™: a cost-effective, carbon-free thermal energy solution to decarbonize your commercial building

Commercial buildings represent the highest source of carbon emissions in major cities, making them one of the most important targets in urban decarbonization. eSteam™ is a unique solution that can address this challenge head-on and inexpensively decarbonize healthcare, life sciences, universities and commercial buildings with ease.

Accelerate decarbonization with eSteam™

Vicinity’s renewable thermal energy product will help you accelerate the decarbonization of your building and our communities. Our solution is turn-key. 

eSteam™ reduces the need for you to invest in new onsite energy infrastructure to meet your sustainability goals. By connecting to the district energy system, you eliminate the need to make significant investments to decarbonize your building’s thermal energy load—we’re doing that for you. Vicinity will leverage and build upon existing infrastructure, including our existing network of steam pipes, electric substations, and transmission lines, and deploy the capital needed to rapidly reduce our carbon emissions.

For our cities, Vicinity’s eSteam™ provides a way to cleanly heat and cool urban buildings—reducing the need for natural gas boilers that create unregulated gas stacks and unmonitored carbon emissions—improving overall air quality in neighborhoods.

eSteam™ is the first renewable, carbon-free thermal energy product in the United States, offering maximum flexibility and superior environmental benefits.

eSteam™ benefits:

  • Carbon-free – eSteam™ is carbon-free, so you can meet your sustainability goals and avoid looming carbon taxes.
  • Total flexibility – You nominate how much eSteam™ you want annually and select the renewable electricity source to generate your eSteam™ based on your budget and sustainability objectives.
  • Affordability – eSteam™ is the most cost-effective, affordable option to green your building compared to alternatives, like electric boilers in your building. Vicinity’s access to transmission level rates gives district energy an economic advantage over onsite equipment.
  • Avoid carbon fees and fines – Many cities in the U.S. have implemented or are considering laws that will lower greenhouse gas emissions in buildings. Oftentimes, these policies will carry hefty fines for non-compliance. eSteam™ is carbon- free, giving you peace of mind that your building will be green, without costing you more green.
  • Maximum reliability and resiliency – Join the many customers who choose Vicinity’s district energy heating and cooling products for maximum reliability and resiliency.
  • Low capital investments – To access the benefits of eSteam™, you don’t need to invest in costly capital projects and you can avoid expensive building retrofits. Decarbonize your thermal energy footprint by simply connecting to Vicinity’s district energy network.
  • Certifications – Gain potential points for LEED® and ENERGY STAR® certifications to demonstrate your buildings’ commitment to sustainability.
 

how esteam works diagramCustomers benefit from carbon-free eSteam™ generated with renewable electricity.

How eSteam™ works

By installing electric boilers at our central facilities and procuring renewable power from the grid, we can offer carbon-free steam to meet your buildings’ thermal energy needs. Vicinity can purchase renewable power on your behalf—such as wind, solar and hydro—at transmission level rates, allowing us to keep your costs down.

Coupled with other technologies like industrial-scale heat pumps and thermal storage, our goal is to offer you the most affordable, flexible thermal energy product that lowers carbon footprints, improves air quality and meets sustainability goals.

Vicinity’s eSteam™ is the first renewable, carbon-free thermal energy product in the United States, offering you maximum flexibility and superior environmental benefits.

Lock in with eSteam™ today to decarbonize your buildings and avoid looming carbon fees. To learn more about eSteam™ email our energy experts at info@vicinityenergy.us.

Pumps & Systems podcast: Heat pumps & decarbonization

In this episode of the Pumps & Systems podcast, Bill DiCroce, President and Chief Executive Officer of Vicinity Energy discussed the role heat pumps can play in decarbonization, as well as the efforts cities like Boston are currently making to strive for sustainability and an eventual goal of net zero carbon emissions.

Recommended preventative maintenance

Vicinity’s comprehensive maintenance services are offered year-round—during peak usage or before system turn-ons—to optimize steam efficiency, reliability, and cost savings.

Improve the operating performance of steam systems by taking preventive steps to avoid energy losses. Customers who have leveraged Vicinity’s preventive maintenance program have experienced the following benefits:

  • Conserved energy and reduced energy costs by improving system performance and eliminating inefficiencies.
  • Improved reliability by identifying problem areas that could cause unscheduled system outages.
  • Optimized capital expenditure and operating expenses by maximizing system efficiency and strategically planning for infrastructure investments with an identified budget for equipment repair or replacement.
  • Improved operating procedures by reviewing, refining, and documenting preventative maintenance best practices.
We partner with each of our customers to customize recurring service agreements for the summer and winter seasons, tailoring the maintenance services below to their specific needs. Reach out to your Account Manager today to understand the preventative maintenance services offered in your district.

Steam traps

  • Service description: Survey building, locate, identify, tag, and test steam trap performance.
  • Maintenance value: Ensure steam traps function correctly and prevent issues that can lead to energy waste, equipment damage, and safety hazards.

Pressure Regulating Valves (PRVs)

  • Service description: Identify valves’ make, model, size, and serial number. Test pilot valve for leaks, clean orifices, check diaphragm plates, test the gauging, and set to desired system pressure.
  • Maintenance value: Prevent system over-pressurization and relief valves from releasing steam into the atmosphere. Failed PRVs may improperly cycle open and close, both oversupplying and then starving the downstream equipment of steam.

Strainers

  • Service description: Inspect screens and clean out debris, evaluate source of debris, and troubleshoot. Ensure blow-down valves are functioning properly to flush trapped material.
  • Maintenance value: Reduce rust and pipe scale damage to valves and pumps. Ensure heat transfer surfaces are kept free of efficiency reducing deposits.

Heat exchangers

  • Service description: Perform water chemistry testing, determine if leaks exist, measure tube thickness, repair or plug tubes as needed, and perform preventative maintenance, such as hydrolasing or cleaning as needed.
  • Maintenance value: Recover efficiency losses, optimize operation of the exchangers, and reduce energy consumption.

Steam pipe

  • Service description: Inspect steam piping. Check for leaking joints, watermarks on insulation, and corrosion.
  • Maintenance value: Deliver safe and reliable steam into the building while reducing potential for steam emissions into the building.

Condensate return line

  • Service description: Inspect for leaks and corrosion. Check condensate pump seals for leaks. Check vent pipes for vapor emissions.
  • Maintenance value: Avoid condensate water spills, ensure proper evacuation of condensate from system lines, and identify the presence of leaking steam traps in the system.

Mechanical room hot water loop

  • Service description: Inspect all piping, inlet/outlet temperatures, and pressures on heat exchangers and mechanical pumps.
  • Maintenance value: Confirm adequate operation of key energy transfer equipment, such as heat exchangers, which supply building heat, hot water, or other process loads.

Seasonal and maintenance shutdowns/turn-ons

  • Service description: Manage closure and opening of Vicinity’s main service valve for seasonal system curtailment or start of use. Shutdowns require draining of systems while turn-ons require both draining of systems and operating pressure checks.
  • Maintenance value: Ensure safe and confined operation of Vicinity’s main service valve for shutdowns/turn-ons related to seasonal changes and maintenance activities. Reduce radiant energy losses, condensate accumulation in system piping, and mechanical room air space temperature. Prevent pipes from rotting and prepare systems to be dormant for an extended period by draining the systems for shutdowns.

Emergency winter weather preparedness checklist

Melt away the challenges of winter weather. Prevent costly equipment damage and disruptions to daily operations by proactively preparing for winter weather conditions.

To enhance preparedness, we encourage you to utilize our emergency winter weather preparedness checklist. Regularly reviewing and implementing this guide ensures proactive building readiness for winter conditions. It safeguards against potential freeze-ups in steam and sprinkler systems, mitigates the risk of roof collapses due to heavy snowfall, and protects against potential flooding during extremely cold temperatures. These risks present safety concerns and entail substantial financial and time investments in repairs, with the possible consequence of building shutdowns.

Print out this emergency winter weather preparedness checklist and review it every winter to prepare staff and equipment.


Vicinity has rigorous cold weather protocols to ensure safe, reliable, and consistent operation of its facilities to prevent service disruptions. Our interconnected energy facilities offer 99.99% uptime energy delivery through multiple power supplies, backup generation, and several water and fuel sources in case of interruptions to other utilities. 


Vicinity’s winter weather protocol includes:

  • A comprehensive cold weather plan that entails pre-season preparation, pre-storm planning, weekly winter weather readiness checks, and post-season assessment.
  • Identification, monitoring, and prioritization of components, systems, and other areas of vulnerability at our facilities which may experience freezing problems, pose safety risks, prevent the delivery of fuel or water, or result in other cold weather operational issues.
  • Validation that critical equipment is operational through function testing.
  • Implementing ongoing walk-downs throughout the season to ensure heat tracing is functional, sufficient pipe insulation is in place, and opportunities for continuous improvement are identified.
  • Strict compliance with North American Electric Reliability Corporation (NERC) – Emergency Operations (EOP).
  • Annual training with specific checklists related to freeze protection panel alarms, troubleshooting and repair of freeze protection circuitry, identification of facility areas susceptible to winter conditions, review of special inspections or rounds implemented during severe weather, and fuel switching procedures.

Heating reimagined: industrial-scale heat pumps for building decarbonization

Revolutionizing the way we heat buildings by integrating industrial-scale heat pumps to produce carbon-free eSteam™

Industrial-scale heat pumps are revolutionizing the energy industry. With the ability to produce temperatures of up to 150C, these powerful systems have become a sustainable solution across the globe. As the demand for carbon-free heating increases, the shift away from fossil fuels is finally gaining momentum.

Vicinity is transforming district energy with plans to install an industrial-scale heat complex. This innovative heat pump complex will draw heat from nearby water sources to generate steam and improve the system’s efficiency. Ensuring that the river and its ecosystems remain unharmed, the river intake system lifts heat from the river and brings it into our facilities.

Key facts

  • The proposed Cambridge heat pump will have a steam export capacity of 35MW (thermal)
  • The heat pump will occupy a space of approximately 25,000 sq ft. +/-
  • The heat pump will circulate through 24.5 million to 49 million gallons of water from the Charles River daily

How heat pumps work

  1. River water is pumped into the evaporator to warm the cold refrigerant.
  2. Renewable electricity powers the compressor to pressurize the refrigerant.
  3. Hot, pressurized refrigerant creates low-pressure carbon-free eSteam™ from feed water.
  4. A multi-stage steam compressor increases the pressure of the eSteam™ for distribution.
  5. The refrigerant is cooled and depressurized for the next cycle.
  6. Cooled water is returned to the river, and the process repeats.

 

How Vicinity is using heat pumps

Industrial-scale heat pumps will be installed in cities around the country where Vicinity’s facilities are located near water sources and already employ water intake systems. These heat pumps will extract heat from adjacent water sources, like the Charles and Schuylkill Rivers, to generate steam and improve the system’s overall efficiency.

Across all of our operations, heat pumps will be used with electric boilers and thermal storage technologies to fully decarbonize our operations.

This first planned heat pump complex in Cambridge will be powered by renewable electricity to efficiently harvest energy from the Charles River and return the water to a lower temperature.

Early design of the industrial-scale heat pump Vicinity Energy is developing in partnership with MAN Energy Solutions.

Why industrial heat pumps are important for Vicinity, our customers, and the environment

The global energy transition can only succeed with decarbonizing heat. Why? Heating in buildings is responsible for four gigatons (Gt) of CO2 emissions annually—10% of global emissions, according to the International Energy Agency (IEA). The heating sector accounts for 30-40% of CO2 emissions globally.

Water-source heat pumps are a proven solution to fossil- fuel-driven heating because they can efficiently harness the renewable power of water sources.

In 2021, approximately 10% percent of the global demand for space heating was satisfied by heat pumps. In some countries such as Norway, Sweden, and Finland, heat pumps are the most widely used heating source and have already begun integrating with district energy systems. The district system in Glasgow will leverage heat pumps to extract cold water from the adjacent River Clyde. This will cover over 80% of building heat demand and will deliver immediate carbon reductions of 50%.

By installing industrial-scale heat pumps at our central facilities, Vicinity is one step closer to instantly decarbonizing millions of square feet of building space for the good of our customers, communities, and the cities we operate. The impact of this plan is substantial: by 2035, Vicinity’s investments at our Kendall, MA facility will reduce the carbon intensity of our steam by 50%, the equivalent of 400,000 tons.

Steam trap inspections

Maximize steam efficiency, safety, and cost savings with preventative maintenance

Improve the efficiency and safety of steam systems with steam trap inspections by Vicinity’s qualified technicians. Our team will diagnose and identify issues to keep steam systems operating safely and efficiently 24/7.

Steam traps are critical components of steam systems and play a vital role in maintaining their efficiency and safety. Steam traps collect condensate to prevent corrosion caused by built-up moisture and ensure high-quality, dry steam flows through the steam system. Steam traps also block the escape of live steam, minimizing energy waste. Regular maintenance and monitoring are essential to ensure they function correctly and prevent issues that can lead to energy waste, equipment damage, and safety hazards.

Vicinity’s steam trap inspections offer the following benefits:

  • Reduced energy costs: Steam traps in good condition help conserve steam, reducing energy consumption and operational costs.
  • Improved equipment reliability: Properly maintained traps extend the lifespan of steam-related equipment.
  • Enhanced safety: Reducing energy waste and water hammer incidents improves workplace safety.
  • Environmental benefits: Energy conservation through steam trap maintenance can reduce greenhouse gas emissions.

How it works

Partnering with our customers, Vicinity tailors each approach specifically to the unique needs of the building. The process of performing steam trap inspections typically includes the following steps:

  • Vicinity coordinates an initial walkthrough of the building and provides a quote showing the cost and scope of work.
  • Once the customer returns a signed quote, Vicinity’s account manager schedules the work.
  • A Vicinity technician conducts the steam trap inspection using an ultrasonic digital detector. If this is the first survey, the technician tags and catalogs each trap for future surveys.
  • After the inspection, the customer receives a report detailing:
    • The status of each trap.
    • Recommended action items and the potential savings associated with recommended action items.

Efficiency and system performance

When steam traps fail and steam escapes, systems demand more steam to operate. Steam trap inspections improve the overall operating performance of steam systems, minimizing the amount of energy waste and the associated carbon emissions.

Cost savings

Leaking steam traps result in significant lost capital over the life of the equipment. Analysis by the U.S. Department of Energy and the Boiler Efficiency Institute shows that repairing a faulty steam trap could save thousands of dollars annually. Steam trap inspections represent an opportunity for customers to reduce energy consumption and operating costs.

Safety considerations

Safety is our primary focus. With Vicinity’s trained technicians conducting the inspections, customers can rest assured that the proper measures are in place to safely conduct and identify any steam trap hazards that can lead to a water hammer event. A water hammer event occurs when a failed steam trap allows condensate to build in the steam main. As steam passes over and combines with the excess condensate, it creates a pressure event that can lead to undesirable noise, damaged equipment, and—in worst cases—injury.

 

Vicinity Energy Recognized by Cambridge Chamber of Commerce for eSteam™

Cambridge, December 12, 2023 – Vicinity Energy, a national decarbonization leader with an extensive portfolio of district energy systems across the United States, has been recognized by the Cambridge Chamber of Commerce for its commitment to innovation in the launch of eSteam™, the first renewable, carbon-free thermal energy product in the United States.

Each year, the Visionary Awards recognize innovators from the business, institutional, and non-profit communities who are creating change in Cambridge and beyond. This year’s fellow award recipients include Alexandria Real Estate Equities, Astellas Pharma, the Broad Institute, The Loop Lab, Philips, and Sarepta Therapeutics.

With a commitment to achieve net zero carbon emissions by 2050, Vicinity is electrifying its district energy systems, starting in Boston and Cambridge, with other locations to follow. The company’s multi-pronged decarbonization and electrification plan includes installing innovative technologies such as electric boilers, industrial-scale heat pumps, and thermal storage. Vicinity announced the launch of eSteam™, the first-ever carbon-free thermal energy product powered by renewable energy, as a key part of this strategy.

“Vicinity’s work to decarbonize its customers, operations, and communities by electrifying steam generation truly embodies the Visionary spirit,” stated David Maher, president and CEO of the Cambridge Chamber of Commerce. “We are proud to present the Visionary Award to Vicinity for the development of eSteam™, a renewable carbon-free product that will be critical to helping businesses decarbonize their operations in Boston and Cambridge.”

“At IQHQ, we are developing transformative science districts across Boston that will leverage e-steam from Vicinity Energy to meet the needs of our life science tenants and our organization’s sustainability goals,” said Will Ashton, senior director of development for IQHQ.  “We are excited to have partnered with Vicinity to decarbonize the steam serving our projects with renewable energy options that comply with the City’s BERDO 2.0 regulations.

“This is an exceptional recognition of eSteam™, our renewable carbon-free product,” said Kevin Hagerty, president and deputy chief executive officer of Vicinity Energy. “The Chamber’s Visionary award solidifies our commitment to a clean energy future and demonstrates our team’s commitment to helping our innovative customers like IQHQ lower carbon emissions and combat climate change.”

The race to net zero

In November of 2022, the company kicked off its electrification strategy by deconstructing a steam turbine at its Kendall Facility in Cambridge, Massachusetts. In its place, Vicinity is installing an electric boiler that will begin supplying eSteam™ to customers in 2024.

In April 2023, Vicinity took another crucial step forward, announcing its partnership with Augsburg, Germany-based MAN Energy Solutions to collaborate in engineering low-temperature source heat pump systems for steam generation. Vicinity plans to install an industrial-scale heat pump complex at its Kendall Station facility by 2027.

The company’s other 10 locations will undergo similar electrification processes in the coming years to achieve its operations goal of net zero by 2050.

About Vicinity Energy
Vicinity Energy is a clean energy company that owns and operates an extensive portfolio of district energy systems across the United States. Vicinity produces and distributes reliable, clean steam, hot water, and chilled water to 250 million square feet of building space nationwide. Vicinity continuously invests in its infrastructure and the latest technologies to accelerate the decarbonization of commercial and institutional buildings in city centers. Vicinity is committed to achieving net zero carbon across its portfolio by 2050. To learn more, visit https://www.vicinityenergy.us or follow us on LinkedIn, Twitter, Instagram, or Facebook.

Media Contact

Sara DeMille
Marketing and Communications
857-955-5073
sara.demille@vicinityenergy.us

Commercial, Industrial Sites Embrace Innovation for New Generation

Boston Neighborhood Network Talk of the Neighborhoods

Decarbonizing public infrastructure: How government buildings are leading the energy transition

Today, government agencies juggle competing priorities, balancing budget restraints, hiring needs, improving processes, and focusing on reducing carbon impact.

Municipal, state, and federal buildings have unique energy requirements. From courthouses and state houses to medical facilities and libraries, these buildings must serve the needs of the public while keeping employees comfortable and able to do their critical work.

Sustainable energy solutions for government buildings

Government buildings have a significant opportunity to decarbonize their operations. Around the world, building operations and materials are responsible for roughly 42% of annual carbon emissions.

Across the U.S., leading cities are taking action to reduce this substantial carbon footprint. Building performance standards are being enacted, requiring buildings to reduce carbon emissions. These requirements make low-carbon, sustainable energy a non-negotiable requirement for new and existing buildings, and government operations are no exception.

In 2023, the Federal government announced the first-ever Federal Building Performance Standard (BPS), which aims to cut energy use and electrify equipment and appliances in 30% of Federally owned building space by 2030.

Many federally owned buildings are partnering with district energy systems to meet these carbon requirements and appeal to eco-conscious employees. Federal buildings currently connected to district energy systems can instantly meet the requirements set by the new standard, and buildings connected in the future can also meet these requirements while benefitting from the efficient, sustainable, and reliable service district energy provides.

Supporting mission-critical work

Because district energy systems leverage centralized infrastructure to serve multiple buildings connected to one system, cities across the U.S. are turning to district energy to advance their clean energy goals and meet their reliability needs.

District energy systems are fuel agnostic, making them a powerful tool for building decarbonization. Vicinity is deploying innovative technologies and integrating renewable energy sources such as wind, solar, and hydro into our systems to decarbonize the buildings we serve by 2050 or sooner. With Vicinity, building owners and operators can rely on an uninterrupted energy supply while reducing their carbon impact.

By connecting to Vicinity’s district energy system, government buildings not only have access to reliable, sustainable energy but are also supported by a team of experts to ensure their operations run smoothly and efficiently. Our specialists include experienced licensed engineers, operators, and financial professionals who provide dedicated service.

Vicinity Energy serves over 40 million square feet of government building space nationwide, working as a trusted energy partner with federal and state operations, from libraries and city halls to federally-owned hospitals.

Benefits of district energy service

From reducing carbon emissions to improving resilience, district energy systems provide reliable service to government buildings so they can focus on the vital work that is shaping our country. With district energy, government buildings can free up additional space, reduce energy expenses, and meet emission reduction requirements.

Vicinity’s energy solutions for government buildings are reliable and sustainable. They help advance the innovations that propel our communities forward and protect the world.

  • Increased reliability and sustainability – District energy is a safer and more sustainable alternative to onsite chillers or boilers. Vicinity’s 99.99% reliable energy service allows government operations to focus on their critical work.
  • Reduced carbon footprint – As Vicinity electrifies our district energy systems, carbon-free energy helps buildings better align with government efforts to protect the health of local ecosystems and communities.
  • Transferred energy risk – Vicinity’s district energy systems have interconnected central facilities with multiple power supplies, fuel sources, and back-up generation to ensure continual service. In addition, connected buildings reduce energy risk by transferring operations and maintenance (O&M) responsibility to Vicinity’s energy experts.
  • Reduced operations and maintenance costs – Vicinity’s O&M services maximize your infrastructure investment by keeping building energy systems working at peak performance.

Get started with district energy today to decarbonize your buildings and access reliable, uninterrupted service.