Heating reimagined: industrial-scale heat pumps for building decarbonization

Revolutionizing the way we heat buildings by integrating industrial-scale heat pumps to produce carbon-free eSteam™

Industrial-scale heat pumps are revolutionizing the energy industry. With the ability to produce temperatures of up to 150C, these powerful systems have become a sustainable solution across the globe. As the demand for carbon-free heating increases, the shift away from fossil fuels is finally gaining momentum.

Vicinity is transforming district energy with plans to install an industrial-scale heat complex. This innovative heat pump complex will draw heat from nearby water sources to generate steam and improve the system’s efficiency. Ensuring that the river and its ecosystems remain unharmed, the river intake system lifts heat from the river and brings it into our facilities.

Key facts

  • The proposed Cambridge heat pump will have a steam export capacity of 35MW (thermal)
  • The heat pump will occupy a space of approximately 25,000 sq ft. +/-
  • The heat pump will circulate through 24.5 million to 49 million gallons of water from the Charles River daily

How heat pumps work

  1. River water is pumped into the evaporator to warm the cold refrigerant.
  2. Renewable electricity powers the compressor to pressurize the refrigerant.
  3. Hot, pressurized refrigerant creates low-pressure carbon-free eSteam™ from feed water.
  4. A multi-stage steam compressor increases the pressure of the eSteam™ for distribution.
  5. The refrigerant is cooled and depressurized for the next cycle.
  6. Cooled water is returned to the river, and the process repeats.

 

How Vicinity is using heat pumps

Industrial-scale heat pumps will be installed in cities around the country where Vicinity’s facilities are located near water sources and already employ water intake systems. These heat pumps will extract heat from adjacent water sources, like the Charles and Schuylkill Rivers, to generate steam and improve the system’s overall efficiency.

Across all of our operations, heat pumps will be used with electric boilers and thermal storage technologies to fully decarbonize our operations.

This first planned heat pump complex in Cambridge will be powered by renewable electricity to efficiently harvest energy from the Charles River and return the water to a lower temperature.

Early design of the industrial-scale heat pump Vicinity Energy is developing in partnership with MAN Energy Solutions.

Why industrial heat pumps are important for Vicinity, our customers, and the environment

The global energy transition can only succeed with decarbonizing heat. Why? Heating in buildings is responsible for four gigatons (Gt) of CO2 emissions annually—10% of global emissions, according to the International Energy Agency (IEA). The heating sector accounts for 30-40% of CO2 emissions globally.

Water-source heat pumps are a proven solution to fossil- fuel-driven heating because they can efficiently harness the renewable power of water sources.

In 2021, approximately 10% percent of the global demand for space heating was satisfied by heat pumps. In some countries such as Norway, Sweden, and Finland, heat pumps are the most widely used heating source and have already begun integrating with district energy systems. The district system in Glasgow will leverage heat pumps to extract cold water from the adjacent River Clyde. This will cover over 80% of building heat demand and will deliver immediate carbon reductions of 50%.

By installing industrial-scale heat pumps at our central facilities, Vicinity is one step closer to instantly decarbonizing millions of square feet of building space for the good of our customers, communities, and the cities we operate. The impact of this plan is substantial: by 2035, Vicinity’s investments at our Kendall, MA facility will reduce the carbon intensity of our steam by 50%, the equivalent of 400,000 tons.

Steam trap inspections

Maximize steam efficiency, safety, and cost savings with preventative maintenance

Improve the efficiency and safety of steam systems with steam trap inspections by Vicinity’s qualified technicians. Our team will diagnose and identify issues to keep steam systems operating safely and efficiently 24/7.

Steam traps are critical components of steam systems and play a vital role in maintaining their efficiency and safety. Steam traps collect condensate to prevent corrosion caused by built-up moisture and ensure high-quality, dry steam flows through the steam system. Steam traps also block the escape of live steam, minimizing energy waste. Regular maintenance and monitoring are essential to ensure they function correctly and prevent issues that can lead to energy waste, equipment damage, and safety hazards.

Vicinity’s steam trap inspections offer the following benefits:

  • Reduced energy costs: Steam traps in good condition help conserve steam, reducing energy consumption and operational costs.
  • Improved equipment reliability: Properly maintained traps extend the lifespan of steam-related equipment.
  • Enhanced safety: Reducing energy waste and water hammer incidents improves workplace safety.
  • Environmental benefits: Energy conservation through steam trap maintenance can reduce greenhouse gas emissions.

How it works

Partnering with our customers, Vicinity tailors each approach specifically to the unique needs of the building. The process of performing steam trap inspections typically includes the following steps:

  • Vicinity coordinates an initial walkthrough of the building and provides a quote showing the cost and scope of work.
  • Once the customer returns a signed quote, Vicinity’s account manager schedules the work.
  • A Vicinity technician conducts the steam trap inspection using an ultrasonic digital detector. If this is the first survey, the technician tags and catalogs each trap for future surveys.
  • After the inspection, the customer receives a report detailing:
    • The status of each trap.
    • Recommended action items and the potential savings associated with recommended action items.

Efficiency and system performance

When steam traps fail and steam escapes, systems demand more steam to operate. Steam trap inspections improve the overall operating performance of steam systems, minimizing the amount of energy waste and the associated carbon emissions.

Cost savings

Leaking steam traps result in significant lost capital over the life of the equipment. Analysis by the U.S. Department of Energy and the Boiler Efficiency Institute shows that repairing a faulty steam trap could save thousands of dollars annually. Steam trap inspections represent an opportunity for customers to reduce energy consumption and operating costs.

Safety considerations

Safety is our primary focus. With Vicinity’s trained technicians conducting the inspections, customers can rest assured that the proper measures are in place to safely conduct and identify any steam trap hazards that can lead to a water hammer event. A water hammer event occurs when a failed steam trap allows condensate to build in the steam main. As steam passes over and combines with the excess condensate, it creates a pressure event that can lead to undesirable noise, damaged equipment, and—in worst cases—injury.

 

Commercial, Industrial Sites Embrace Innovation for New Generation

Pumps & Systems Podcast: Heat Pumps & Decarbonization

Dynamic Duo: How Pairing Electric Boilers With A Heat Pump Complex Will Benefit CRE Sustainability Goals In Boston, Cambridge And Beyond

Decarbonizing building heating

In this panel with the New England Clean Energy Council (NECEC), Vicinity’s Chief Customer Officer Jackie Bliss joined experts to discuss how big buildings, campus installations and whole neighborhoods can migrate to clean forms of heating.

White paper: Revolutionizing urban sustainability

FREE DOWNLOAD

White paper: Revolutionizing urban sustainability

We’re amid an energy transformation driven by a mounting global crisis: climate change. Across the world, we are experiencing more extreme weather events due to accelerating levels of atmospheric greenhouse gas emissions. Mitigating carbon in the production and distribution of energy is now just as critically important as our society’s ever-growing need for energy itself. It’s clear that we need resilient, reliable and agile energy solutions…now. 

District energy systems, like Vicinity’s, are uniquely positioned to take advantage of existing infrastructure in conjunction with critical technological advancements to cost-effectively decarbonize quickly. This white paper highlights the benefits of district energy in a decarbonizing world, specifically how electrifying district energy can help urban centers rapidly and affordably achieve city and state carbon reduction goals.

Learn more about how the electrification of district energy systems can help U.S. cities achieve building decarbonization.

Fill in the details below for immediate access to the white paper.

In this white paper, you'll learn:

Our plan

Details on Vicinity’s multi-pronged strategy and execution plan, including our specific electrification plans and how this strategy will be applied to Vicinity’s systems nationwide.

Leading examples

Examples from other European cities that are leading the way in district energy electrification and driving carbon emissions reductions.

How we can work together

Why public-private partnership is so critical to achieving expeditious and successful decarbonization outcomes.

Electrification progress in action

The electrification of our Kendall Square facility in Cambridge, Massachusetts is well underway, with the installation of our first 42MW electric boiler. 

installation of a large scale electric boiler

Our customers

We help organizations of all sizes—from hospitals to hotels to municipalities—use and manage energy more efficiently, sustainably, and strategically.

Now is the time to triple down on renewables

District energy and its importance to a greener future

In this interview with Capital Analytics, Chief Customer Officer of Vicinity Energy Jackie Bliss discusses why district energy will be crucial to decarbonization efforts, as well as the current status of women leadership in the energy and utilities sector.

How century-old ​‘district energy’ networks can help decarbonize cities